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1. INTRODUCTION

{.1. In 1960 P. Turan [5] considered for fe C(K), K:= [—1, 1], every
neN and j(n)e{l, modified Hermite-Fejér interpolation
polynomials H%, (/. A) of degree <2n—2 based on the nodes of a
triangular matrix A whose nth row is given by

Sl X, < <Xy, < (1.1)

in

{in the sequel we often omit the index »). The polynomials H}, (f, 4) are
uniquely determined by the conditions

/(n)(f A)(xk) _‘f(xk) (k= 17 sees n):

{1.2
!(n)(fA)(’CI\)— {kzl-s n a’ndk‘-’é,l’(n))
and can be represented by
j(n)(f A) Hn(f A)+ (n)(f A}a (13}

where H,(f, 4) is the Hermite—Fejér interpolation polynomial of degree
<2n — | satisfying

H,(f, A)(xi) = flx)
H,(f, A)(x:)=0

and the remainder R, (f, 4) is represented by

(k=1,..,n)},

wix) & wixg)
R (f. A} x)=—2= . TINEL (14
ion( s ANx) — Xjim) k:l(wn(xl\»))3
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where w,, is given by

0,x)= [T (x=x).
k=1

1.2. Using the special matrix T whose nth row is given by

2k —1
X4, = COS ( n) k=1, ..,n) (1.5)
2n

P. Turan proved the unexpected result (see [5, Theorem 17)
lim [|HY,)(f, T)—f1=0

(1.6)
dx=0

©Jl x - f(x)
1 J1—x°

(]I-I denotes the usual maximum-norm of C(K)) for every fe C(K) and
“exceptional-point” sequences (X)), n satisfying an “e-restriction,” that
means

I <1—¢ (1.7)

for suitable 0 <e< 1 and all sufficiently large n.

1.3. In answer to this result V. Kumar and K. K. Mathur [2] in 1980
asserted that for every fe C(K) and every exceptional-point sequence
uniform convergence

lim [HY,(f. B)—f=0 (18)

n— oc

can be achieved by use of the matrices B, (i=1, 2, 3) instead of T when the
nth row of B, is given by

X = COS <2k_1n (k=1,..,n)fori=1, (1.9)
2n—1

X = COS 4 (k=1, .., n)fori=2, (1.10)
2n—1
k—1 .

x,,,,=cos< _1n> (k=1,.,n)fori=3. (1.11)

1.4. In this paper we show that (1.8) is not true for arbitrary f e C(X)
whenever the exceptional-point sequence (x;,)).c~ satisfies (1.7).
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Regarding e-restricted sequences (xj,,),.n we will prove that for every
feV, (where V, (i=1, 2, 3) are suitably chosen subspaces of C(K)) integral
conditions similar to (1.6) are necessary and sufficient in order that (1.8}
holds.

2. RESULTS

DeriniTION 2.1, For arbitrary real numbers p, g >0 we define sub-
spaces U'74'(K) of C(K) b

fe U”’""(K)
< fe C(K

def

and
if p > 0 there exist real numbers A, é > 0 such that

if(x)—f(l)] <M-(l _x)pﬁ-d

for every x € K; and

if ¢ > O there exist real numbers M, é > 0 such that

if(x)—f(—I)lgM.(1+x)q+a

forevery xe K.

THEOREM 2.2. Define for abbreviation

= UOI(K), Vs 1= UL2O(K), Vyi= U 2I3(K)

and
U flx)=f(—1) i
If B,):= dx Vi,
(f, B1) jl\/l—xz-(ler) x  for feV,
I(ﬁBl);:J'l ,f("‘)_f“) dx  for feVs,
T2 (1=x)
and
I(f. Bs)Y:= I f. By)— I/, By) Jor fel;.

Consider exceptional-point sequences satisfying (1.7). Then jfor every
i=1,2,3 and every feV, the equivalence

lim (| Hj(f, B) = 1 =0 I(f, B)=0

"=

holds.
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3. PROOF OF THE THEOREM

3.1. It is well known that for every i=1, 2, 3 and every f e C(K),
lim [H,(f, B)—fIl=0 (3.1)

H — oC

(see V. Kumar [1] for i=1,2 and R. B. Saxena [3] for i=3). Thus, by
(1.3) and (3.1), we have to verify

lim || Ry (/5 Bl =0<=I(f, B)=0 (3.2)

for every i=1, 2,3 and every f €V, in order to prove the theorem. In the
sequel we will verify (3.2) for i=1. The proofs for i= 2, 3 follow similarly.

3.2. Leta, f> —1 denote w,,: K— R the weight function given by
wap(x)=(1—x)*- (1 +x)*
and P“# the nth Jacobi polynomial satisfying
PEP(L) = ("1, (3.3)
PP (x)=(—1)"- PP —x) (xeK), (34)
Peb(xy=4-(n+a+p+1) - Pe++1(x)  (xeKkK), (3.5)

and
C(n*) <0<@<£)’
n
|PleFl(cos @) = (3.6)
@ L2 .0(n"?) <£<9<E>,
n 2

for n— o, where ¢>0 is arbitrarily fixed (compare G.Szegd [4,
Theorem 7.32.21]).

33. Using (14) and the fact that (for #>2) the nodes
x,=cos((2k—1)n/(2n—1)) (k=1, ..,n—1) are the zeros of P!{—}%12) we
have

R,/(n)(f» B[)ZE,-(,,,(BI).SH(f, B)), (3.7)
where
b () - (PO 1212 ()2
E/(n)(Bl, —Y)ZHOW(Y) Y(‘I:”;l (Y)) (XEK) (38)

)
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and

S.(f. B,)= i Slxg)

T13.1 3 3
e Wil - (P 2 (x0)

2. P;ill,z.lvzr( _ E;
+ (P(fm.x,z;(_ 1 ))3

n—1

=), (3.9}

34. In order to prove (3.2) for the point system B, we establish the
following lemmas:

LEMMA 3.1.  For every exceptional-point sequence {(X;,),.n, Salisfving
(1.7) the estimate
IEym (B = O(1)
holds for n - x.

Proof. Let (x,)),cn (satisfying (1.7)) be given and consider arbitray
xek.

st case. |x—x;,|<e2 (where 0 <e<1 is fixed by (1.7)). By the mean
value theorem of differential calculus and (3.5)

IF/(M)(BI, Xj| = woa(x) - \P‘fl'vz’lm(xﬂ

n—1
—-1/2.1,2 —1,2.1:2)
i Pszfll' ' )('Y)_Pil-—ll ' ’(X/’(n))s
X X ‘
= o)+ [P )] [P ()
4

=woa{x)- [P ()]

n—1

3
holds, where {=¢ . Using the fact that x, e [ —1+¢/2, 1 —¢/2] for all
sufficiently large #» we obtain by (3.6) and (3.4} for n »

|Ejm(By, x)i = (1}
{The constant is independent of x.)

2nd case. |x—x;,,|>¢&/2. By (3.6) and (3.4) we have

-
Cin Y (OSGS;),
\ &/
/ \
1P 121 D(cos ©))2= { (n— @) 2-C(n ") (\Zg@sﬁ—fj, (3.10
2 "
@(n) (n—£<@<7r\,
\ n /i
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for n —» oo, where ¢ >0 is arbitrarily fixed. Using the fact that

N @ 1
{1 +cos @)“:4-003“(7) <

(n—0)  (0<o<n),

£

we obtain by (3.10) that

wos - (P22 = C(n~ D)

holds for n — oo. Thus we have for [x — x| >¢/2

n—1

2 ,
[ Eynl Brs X} <= wo(x) - (P, 1 (x))?=0(n"")

for n — 20, which completes the proof of Lemma 3.1. ||

In order to exclude that lim, , . [[Fy,,(B,)| =0 is possible we prove

LEmMMA 3.2. For every exceptional-point sequence (Xj.,).n Satisfying
(L.7) there exists a sequence (n;),.n <N, a sequence (t,)..n of real
numbers t,, € [0, n], and a fixed C >0 such that

ny;
|Fjim( By, cos(t,,))| = C (3.11)

holds for all sufficiently large n,.

Proof. Using the asymptotic formula of Darboux for the Jacobi
polynomials (compare G.Szegé [4, Theorem 8.21.8]) we obtain for
0<O<n—6 (0<d<mn/2is arbitrarily fixed) uniformly for n — o

4.c0s%(0/2) - cos’(NO)+ G(n~")

7[-(]’2—l).(cos(@)_cos(@j(n))) 3 (312)

|1F

Jin)

(B, cos @) =

where @, = arccos(x;,,) and N=(2n—1)/2. This asymptotic represen-
tation will be fundamental to prove Lemma 3.2. Let (x;,)),. n (satisfying
(1.7)) be arbitrarily chosen and y,,, := cos(N@,,,). Then the theorem of
Bolzano-Weierstral} yields

lim y,,=gek for suitable (), v = N.
k— o
Now we will construct the sequence (z,, ), . - For that purpose we consider

two cases and omit the index k of the numbers #, in the sequel of this
proof.
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Ist case. g+#0. We define t,:= 0, +n/(n—1). Using

R
2n -2j

cos?(Nt,) = 2<N@j(,,,+n+

/ T
={ cos(N@,,,) - cos kn + 3

. Y
—sin(NO,,) - sm( P )/

we obtain
lim cos*(Nt,)= g?>0. {3.13;

"n— X

2nd case. g=0. We define 1, := 0, + n/(2n—2}. Now
cos?(Nt,)

3

T
= (COS(N@j(H)) -cos <§ + 4n — 4)

2
—sin(N@,,,) - sin ( 4n — 4>>

))=1 yield

I:l
=

and lim, _ . sin’(N@,,,)=lim, , (1 —cos’(NO

joen

lim cos?(Nt,)= 1. (3.14)
Regarding (1.7) the existence of 0 < =4d(¢) <n/2 is ensured in order that

o0<t,<n—0 for both cases and all sufficiently large » hold. Thus we
obtain (applying (3.12) and by (3.13), (3.14)) that

I,

j(n)(Bl? COS(I,,))I
¢,

=
m-(n—1)-(cos(t,)—cos{€;,)))

(3.15)

is true for a suitable C; >0 (independent of n) and all sufficiently large ».
By the mean value theorem of differential calculus we obtain for those »

|- (n—1)-(cos(t,) —cos(O;,,))|
= CziSIH(é)l (é<§=é([m@jm)}<n—5)
< G, (3.16)

{(For the Ist case we have C,=7" and for the 2nd case C,=r>/2.) The
estimates (3.15) and (3.16) complete the proof of Lemma 3.2. §
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Lemma 3.3. For every fe V| the representation

‘ flx) —f(=1) :
S,(f, B))= e - 3.17
(f 1) kgl wl,}(xk) . (P’(Iililz,l,«_) (xk))_ ( )
holds.
Proof. We will prove
2 R P( :11/'2,1/2]’( _ 1) n 1
- = — e, 3.18
T T S e Ny el T
then (3.17) follows immediately by (3.9). For the polynomial
. cos(2n—1)/2 -arccos(x)) ,
x)= xeK),
G (%) cos(arccos(x)/2) (xekK)
we have
G () = 2n—1 ‘ sin((Znﬁ— 1)/2 - arccos(x,)) k=1 on—1)
2 \/1 — xz -cos(arccos(x;)/2)
and
2n—1)?
G =Y ey am, (3.19)
2wy p{xy)
On the other hand we have
(Gpo((—1))=(2n—1)% (3.20)
Using the fact that
n—1
PR (x) =[] ((2k—1)/2k)-G,,_ ((x),
k=1
by (3.19) and (3.20) it follows that
(PLTAUD(= 1)) = 2w 5(x) - (P () (3.21)

is true for every k=1, ..,n— 1. Now by (3.21) and

P:I—Vliv'l,l,‘"Z)'( _ 1 ) _ n—1 1

PRI 2 T x,

n—1

(3.18) follows immediately. §
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LemMma 3.4, For every f€ V| we have

lim S,(f.B))=4-I(f, B.).

Proof. Consider for a, > —1 the nth Gauss-Jacobi gquadrature
formula {(see G. Szegd [4, Ch. 15.37])

QIP(g)= Y. AP glxis?) (3.22)
k=1

in respect to w,,, where g: K— R is a function for which the (possibly
improper) integral

rl ]
[wﬂi(g) = J 1 w,plx) glx}dx

eXists.
The weights AP (k=1, .., n) of (3.22) are given by

},(aB!
2B = n (3.23)
W, l(x(aﬁ)) (P(alh ’aﬁr}r {
where
I'n+a+1)y-I'(n+B+1; .
el = garhrL. ( ) Lntp+1) (3243

Tn+1)-Nn+a+L+1)

and x{“# (k=1,..,n) are the zeros of P!*#. It is well known that the
quadrature convergence

lim Q:’Ia,ﬂ)(g) — [(a,ﬁ){g) (3‘25}

H— X

holds for every function g: K— R, for which the integral I'“P{g) exists
(compare G.Szegd [4, Theorem 15.2.37). Now let fe F, be arbitrarily
fixed. By (3.17), (3.22)-(3.24) we obtain

1 )
S.(f, B )= }—17—17) Q,‘,:lzln(g} (3.26;

n—1
where g,: ]—1, 1] > R is defined by
Six)=f(-1)

wo2(x)

g/ (x) =
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The assumption f e V, implies the existence of real constants M, § >0 such
that

x)—f(—1

is true for every xe ]—1, 1], which implies

Sx)—f(=1)

1+Y d+1/2

<SW_y5 1(x)-M for xe]—-1,1].

[W_12.00(x) - gf(x)| =W_ys_1(x)-

This estimate ensures (using the existence of the integral
JY w15 1(x)- M dx) the existence of I'~Y>Y?)(g,). Thus (3.25) can be
applied; regarding (3.26) and lim,, _, .. 7~ 1>12)=2 we obtain

1
lim S,(f, B,)= lim ——5= - Q4= (g,)

H o~ oD n-— a0 7'

312 g ) =5 1(f, By). |

3.5. Now (3.2) can easily be proved by use of the preceding lemmas.
Therefore let an exceptional-point sequence (X;.,,), » satisfying (1.7) and
an f eV, be arbitrarily given.

(i) In the case I(f, B;)=0 Lemma 3.4 implies lim,_, . S,(f, B;)=0
which yields (by Lemmas 3.1 and (3.7)) lim,, , , [|R;.,(f, B,)| =0

(ii) On the other hand let be lim,_ , [Ry,,(f, B;)|=0. This
implies lim,, _, . ||F, (,,,(B M-S.(f, Bi)=0. That yields (using that
lim, , . [[F},(B,)] =0 is impossible by Lemma 3.2)

lim S,(f, B,)=1-1(f,B,)=0. |

H— L
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