Uniform Convergence of Modified Hermite-Fejér Interpolation Processes

Manfred Bettger
Department of Mathematics, University of Duisburg, 4100 Duisburg, West Germany
Communicated by R. Bojanic

Received February 25, 1985

1. Introduction

1.1. In 1960 P . Turán [5] considered for $f \in C(K), K:=[-1,1]$, every $n \in \mathbb{N}$ and $j(n) \in\{1, \ldots, n\}$, modified Hermite-Fejer interpolation polynomials $H_{j(n)}^{*}(f, A)$ of degree $\leqslant 2 n-2$ based on the nodes of a triangular matrix A whose nth row is given by

$$
\begin{equation*}
-1 \leqslant x_{n n}<\cdots<x_{1 n} \leqslant 1 \tag{1.1}
\end{equation*}
$$

(in the sequel we often omit the index n). The polynomials $H_{j(n ;}^{*}(f, A)$ are uniquely determined by the conditions

$$
\begin{align*}
H_{j n}^{*}(f, A)\left(x_{k}\right) & =f\left(x_{k}\right) & & (k=1, \ldots, n), \\
H_{i(n)}^{*}(f, A)^{\prime}\left(x_{k}\right) & =0 & & (k=1, \ldots, n \text { and } k \neq j(n)) \tag{1.2}
\end{align*}
$$

and can be represented by

$$
\begin{equation*}
H_{j(n)}^{*}(f, A)=H_{n}(f, A)+R_{j(n)}(f, A), \tag{1.3}
\end{equation*}
$$

where $H_{n}(f, A)$ is the Hermite Fejér interpolation polynomial of degree $\leqslant 2 n-1$ satisfying

$$
\begin{aligned}
H_{n}(f, A)\left(x_{k}\right) & =f\left(x_{k}\right) \\
H_{n}(f, A)^{\prime}\left(x_{k}\right) & =0
\end{aligned} \quad(k=1, \ldots, n),
$$

and the remainder $R_{j(n)}(f, A)$ is represented by

$$
\begin{equation*}
R_{j(n)}(f, A)(x) \equiv \frac{\omega_{n}^{2}(x)}{x-x_{j(n)}} \cdot \sum_{k=1}^{n} \frac{\omega_{n}^{\prime \prime}\left(x_{k}\right)}{\left(\omega_{n}^{\prime}\left(x_{k}\right)\right)^{3}}, \tag{1.4}
\end{equation*}
$$

where ω_{n} is given by

$$
\omega_{n}(x) \equiv \prod_{k=1}^{n}\left(x-x_{k}\right)
$$

1.2. Using the special matrix T whose nth row is given by

$$
\begin{equation*}
x_{k n}=\cos \left(\frac{2 k-1}{2 n} \pi\right) \quad(k=1, \ldots, n) \tag{1.5}
\end{equation*}
$$

P. Turán proved the unexpected result (see [5, Theorem 1])

$$
\begin{array}{r}
\lim _{n \rightarrow x}\left\|H_{j(n)}^{*}(f, T)-f\right\|=0 \\
\Leftrightarrow \int_{-1}^{1} \frac{x \cdot f(x)}{\sqrt{1-x^{2}}} d x=0 \tag{1.6}
\end{array}
$$

$(\|\cdot\|$ denotes the usual maximum-norm of $C(K)$) for every $f \in C(K)$ and "exceptional-point" sequences $\left(x_{j(n)}\right)_{n \in \mathbb{N}}$ satisfying an " ε-restriction," that means

$$
\begin{equation*}
\left|x_{j(n)}\right| \leqslant 1-\varepsilon \tag{1.7}
\end{equation*}
$$

for suitable $0<\varepsilon<1$ and all sufficiently large n.
1.3. In answer to this result V. Kumar and K. K. Mathur [2] in 1980 asserted that for every $f \in C(K)$ and every exceptional-point sequence uniform convergence

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|H_{j(n)}^{*}\left(f, B_{i}\right)-f\right\|=0 \tag{1.8}
\end{equation*}
$$

can be achieved by use of the matrices $B_{i}(i=1,2,3)$ instead of T when the nth row of B_{i} is given by

$$
\begin{array}{ll}
x_{k n}=\cos \left(\frac{2 k-1}{2 n-1} \pi\right) & (k=1, \ldots, n) \text { for } i=1 \\
x_{k n}=\cos \left(\frac{2 k}{2 n-1} \pi\right) & (k=1, \ldots, n) \text { for } i=2 \\
x_{k n}=\cos \left(\frac{k-1}{n-1} \pi\right) & (k=1, \ldots, n) \text { for } i=3 \tag{1.11}
\end{array}
$$

1.4. In this paper we show that (1.8) is not true for arbitrary $f \in C(K)$ whenever the exceptional-point sequence $\left(x_{j(n)}\right)_{n \in \mathbb{N}}$ satisfies (1.7).

Regarding e-restricted sequences $\left(x_{j(n)}\right)_{n \in \mathbb{N}}$ we will prove that for every $f \in V_{i}$ (where $V_{i}(i=1,2,3)$ are suitably chosen subspaces of $C(K)$) integral conditions similar to (1.6) are necessary and sufficient in order that (1.8) holds.

2. Results

Definition 2.1. For arbitrary real numbers $p, q \geqslant 0$ we define subspaces $U^{f(q)}(K)$ of $C(K)$ by

$$
\begin{aligned}
& f \in U^{(p, q)}(K) \\
& \underset{\operatorname{def}}{\leftrightarrows} f \in C(K)
\end{aligned}
$$

and
if $p>0$ there exist real numbers $M, \delta>0$ such that

$$
\begin{aligned}
& |f(x)-f(1)| \leqslant M \cdot(1-x)^{p+\delta} \\
& \text { for every } x \in K ; \text { and }
\end{aligned}
$$

if $q>0$ there exist real numbers $M, \delta>0$ such that

$$
\begin{aligned}
& |f(x)-f(-1)| \leqslant M \cdot(1+x)^{q+\delta} \\
& \text { for every } x \in K
\end{aligned}
$$

Theorem 2.2. Define for abbreviation

$$
V_{1}:=U^{(0.1: 2)}(K), V_{2}:=U^{(12.0)}(K), V_{3}:=U^{(12,1 / 2)}(K)
$$

and

$$
\begin{array}{ll}
I\left(f, B_{1}\right):=\int_{-1}^{1} \frac{f(x)-f(-1)}{\sqrt{1-x^{2}} \cdot(1+x)} d x & \text { for } f \in V_{1}, \\
I\left(f, B_{2}\right):=\int_{-1}^{1} \frac{f(x)-f(1)}{\sqrt{1-x^{2}} \cdot(1-x)} d x & \text { for } \quad f \in V_{2},
\end{array}
$$

and

$$
I\left(f, B_{3}\right):=I\left(f, B_{1}\right)-I\left(f, B_{2}\right) \quad \text { for } f \in V_{3}
$$

Consider exceptional-point sequences satisfying (1.7). Then for every $i=1,2,3$ and every $f \in V_{i}$ the equivalence

$$
\lim _{n \rightarrow x}\left\|H_{j(n)}^{*}\left(f, B_{i}\right)-f\right\|=0 \Leftrightarrow I\left(f, B_{i}\right)=0
$$

holds.

3. Proof of the Theorem

3.1. It is well known that for every $i=1,2,3$ and every $f \in C(K)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|H_{n}\left(f, B_{i}\right)-f\right\|=0 \tag{3.1}
\end{equation*}
$$

(see V. Kumar [1] for $i=1,2$ and R. B. Saxena [3] for $i=3$). Thus, by (1.3) and (3.1), we have to verify

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|R_{j(n)}\left(f, B_{i}\right)\right\|=0 \Leftrightarrow I\left(f, B_{i}\right)=0 \tag{3.2}
\end{equation*}
$$

for every $i=1,2,3$ and every $f \in V_{\text {i }}$ in order to prove the theorem. In the sequel we will verify (3.2) for $i=1$. The proofs for $i=2,3$ follow similarly.
3.2. Let $a, \beta>-1$ denote $w_{\alpha, \beta}: K \rightarrow \mathbb{R}$ the weight function given by

$$
w_{a, \beta}(x)=(1-x)^{a} \cdot(1+x)^{\beta}
$$

and $P_{n}^{(a, \beta)}$ the nth Jacobi polynomial satisfying

$$
\begin{array}{ll}
P_{n}^{(\alpha, \beta)}(1)=\left({ }_{n}^{+\alpha}\right), & \\
P_{n}^{(\alpha, \beta)}(x)=(-1)^{n} \cdot P_{n}^{(\beta, a)}(-x) & (x \in K), \\
P_{n}^{(a, \beta)}(x)=\frac{1}{2} \cdot(n+a+\beta+1) \cdot P_{n-1}^{(a+1 \cdot \beta+1)}(x) & (x \in K), \tag{3.5}
\end{array}
$$

and

$$
\left|P_{n}^{(\alpha, \beta)}(\cos \Theta)\right|= \begin{cases}\mathcal{O}\left(n^{a}\right) & \left(0 \leqslant \Theta \leqslant \frac{c}{n}\right) \tag{3.6}\\ \Theta^{-a-1 ; 2} \cdot \mathscr{C}\left(n^{-1 / 2}\right) & \left(\frac{c}{n} \leqslant \Theta \leqslant \frac{\pi}{2}\right)\end{cases}
$$

for $n \rightarrow \infty$, where $c>0$ is arbitrarily fixed (compare G. Szegö [4, Theorem 7.32.2]).
3.3. Using (1.4) and the fact that (for $n \geqslant 2$) the nodes $x_{k}=\cos ((2 k-1) \pi /(2 n-1))(k=1, \ldots, n-1)$ are the zeros of $P_{n-1}^{(-1 / 2,1 ; 2)}$ we have

$$
\begin{equation*}
R_{j(n)}\left(f, B_{1}\right)=F_{j(n)}\left(B_{1}\right) \cdot S_{n}\left(f, B_{1}\right), \tag{3.7}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{j(n)}\left(B_{1}, x\right)=\frac{w_{0.2}(x) \cdot\left(P_{n-1}^{(-1: 2.1: 2)}(x)\right)^{2}}{x-x_{j(n)}} \quad(x \in K) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
S_{n}\left(f, B_{1}\right)= & \sum_{k=1}^{n} \frac{f\left(x_{k}\right)}{w_{1,3}\left(x_{k}\right) \cdot\left(P_{n-1}^{(-1,2,12,}\left(x_{k}\right)\right)^{2}} \\
& +\frac{2 \cdot P_{n-1}^{(-1,2,1,2)}(-1)}{\left(P_{n-1}^{(-1,2,1,2)}(-1)\right)^{3}} \cdot f(-1) . \tag{3.9}
\end{align*}
$$

3.4. In order to prove (3.2) for the point system B_{1} we establish the following lemmas:

Lemma 3.1. For every exceptional-point sequence $\left(x_{j n)}\right)_{n \in \mathrm{~N}}$ satisfying (1.7) the estimate

$$
\left\|F_{\text {Jn }}\left(B_{1}\right)\right\|=\mathcal{O}(1)
$$

holds for $n \rightarrow x$.
Proof. Let $\left(x_{j(n)}\right)_{n \in \mathbb{N}}$ (satisfying (1.7)) be given and consider arbitray $x \in K$.

Ist case. $\left|x-x_{j(n)}\right| \leqslant \varepsilon / 2$ (where $0<\varepsilon<1$ is fixed by (1.7)). By the mean value theorem of differential calculus and (3.5)

$$
\begin{aligned}
\left|F_{f(n)}\left(B_{1}, x\right)\right|= & w_{0.2}(x) \cdot\left|P_{n-1}^{(-1: 2,1: 2)}(x)\right| \\
& \cdot\left|\frac{P_{n-1}^{(-1: 2,1,2)}(x)-P_{n-1}^{(-1,2: 1: 2)}\left(x_{j(n)}\right)}{x-x_{(n)}}\right| \\
= & w_{0.2}(x) \cdot\left|P_{n-1}^{(-1,2,12)}(x)\right| \cdot\left|P_{n-1}^{(-1: 2,12)}(\xi)\right| \\
= & w_{0.2}(x) \cdot\left|P_{n-1}^{(-1: 2,1,2)}(x)\right| \cdot \frac{n}{2} \cdot\left|P_{n-2}^{(1,2,3: 2)}(\xi)\right|
\end{aligned}
$$

holds, where $\bar{\zeta}=\xi_{x . x_{j n}}$. Using the fact that $x, \xi \in[-1+\varepsilon / 2,1-\varepsilon / 2]$ for all sufficiently large n we obtain by (3.6) and (3.4) for $n \rightarrow \infty$

$$
\left|F_{j(n)}\left(B_{1}, x\right)\right|=\mathbb{C}(1)
$$

(The constant is independent of x.)
2nd case. $\left|x-x_{f(n)}\right|>\varepsilon / 2$. By (3.6) and (3.4) we have

$$
\left|P_{n}^{\prime-12,12 \backslash}(\cos \Theta)\right|^{2}= \begin{cases}\mathscr{C}\left(n^{-1}\right) & \left(0 \leqslant \Theta \leqslant \frac{\pi}{2}\right), \tag{3.10}\\ (\pi-\Theta)^{-2} \cdot \mathscr{C}\left(n^{-1}\right) & \left(\frac{\pi}{2} \leqslant \Theta \leqslant \pi-\frac{c}{n}\right), \\ \mathbb{C}(n) & \left(\pi-\frac{c}{n} \leqslant \Theta \leqslant \pi\right),\end{cases}
$$

for $n \rightarrow \infty$, where $c>0$ is arbitrarily fixed. Using the fact that

$$
(1+\cos \Theta)^{2}=4 \cdot \cos ^{4}\left(\frac{\Theta}{2}\right) \leqslant \frac{1}{4}(\pi-\Theta)^{4} \quad(0 \leqslant \Theta \leqslant \pi)
$$

we obtain by (3.10) that

$$
\left\|u_{0,2}^{\prime} \cdot\left(P_{n-i}^{(-1 ; 2,1 ; 2)}\right)^{2}\right\|=\mathcal{O}\left(n^{-1}\right)
$$

holds for $n \rightarrow \infty$. Thus we have for $\left|x-x_{j(n)}\right|>\varepsilon / 2$

$$
\left|F_{\mu(n)}\left(B_{1}, x\right)\right|<\frac{2}{\varepsilon} \cdot w_{0,2}(x) \cdot\left(P_{n-1}^{(-1 / 2,1 ; 2)}(x)\right)^{2}=\mathcal{O}\left(n^{-1}\right)
$$

for $n \rightarrow \infty$, which completes the proof of Lemma 3.1.
In order to exclude that $\lim _{n \rightarrow \infty}\left\|F_{j(n)}\left(B_{1}\right)\right\|=0$ is possible we prove

Lemma 3.2. For every exceptional-point sequence $\left(x_{j(n)}\right)_{n \in \mathbb{N}}$ satisfying (1.7) there exists a sequence $\left(n_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{N}$, a sequence $\left(t_{n_{k}}\right)_{k \in \mathbb{N}}$ of real numbers $t_{n_{k}} \in[0, \pi]$, and a fixed $C>0$ such that

$$
\begin{equation*}
\left|F_{j\left(n_{k}\right)}\left(B_{1}, \cos \left(t_{n_{k}}\right)\right)\right| \geqslant C \tag{3.11}
\end{equation*}
$$

holds for all sufficiently large n_{k}.
Proof. Using the asymptotic formula of Darboux for the Jacobi polynomials (compare G. Szegö [4, Theorem 8.21.8]) we obtain for $\delta \leqslant \Theta \leqslant \pi-\delta(0<\delta<\pi / 2$ is arbitrarily fixed $)$ uniformly for $n \rightarrow \infty$

$$
\begin{equation*}
\left|F_{j(n)}\left(B_{1}, \cos \Theta\right)\right|=\left|\frac{4 \cdot \cos ^{2}(\Theta / 2) \cdot \cos ^{2}(N \Theta)+\mathcal{C}\left(n^{-1}\right)}{\pi \cdot(n-1) \cdot\left(\cos (\Theta)-\cos \left(\Theta_{j(n)}\right)\right)}\right|, \tag{3.12}
\end{equation*}
$$

where $\Theta_{j(n)}=\arccos \left(x_{j(n)}\right)$ and $N=(2 n-1) / 2$. This asymptotic representation will be fundamental to prove Lemma 3.2. Let $\left(x_{j(n)}\right)_{n \in \mathbb{N}}$ (satisfying (1.7)) be arbitrarily chosen and $y_{j(n)}:=\cos \left(N \Theta_{j(n)}\right)$. Then the theorem of Bolzano-Weierstraß yields

$$
\lim _{k \rightarrow \infty} y_{j\left(n_{k}\right)}=g \in K \quad \text { for suitable }\left(n_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{N}
$$

Now we will construct the sequence $\left(t_{n_{k}}\right)_{k \in \mathbb{N}}$. For that purpose we consider two cases and omit the index k of the numbers n_{k} in the sequel of this proof.

1 st case. $g \neq 0$. We define $t_{n}:=\Theta_{j(n)}+\pi /(n-1)$. Using

$$
\begin{aligned}
\cos ^{2}\left(N t_{n}\right)= & \cos ^{2}\left(N \Theta_{j(n)}+\pi+\frac{\pi}{2 n-2}\right) \\
= & \left(\cos \left(N \Theta_{j(n)}\right) \cdot \cos \left(\pi+\frac{\pi}{2 n-2}\right)\right. \\
& \left.-\sin \left(N \Theta_{j(n)}\right) \cdot \sin \left(\pi+\frac{\pi}{2 n-2}\right)\right)^{2}
\end{aligned}
$$

we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \cos ^{2}\left(N t_{n}\right)=g^{2}>0 . \tag{3.13}
\end{equation*}
$$

2nd case. $g=0$. We define $t_{n}:=\Theta_{j(n)}+\pi /(2 n-2)$. Now

$$
\begin{aligned}
& \cos ^{2}\left(N t_{n}\right) \\
&=\left(\cos \left(N \Theta_{\mu(n)}\right) \cdot \cos \left(\frac{\pi}{2}+\frac{\pi}{4 n-4}\right)\right. \\
&\left.-\sin \left(N \Theta_{i(n)}\right) \cdot \sin \left(\frac{\pi}{2}+\frac{\pi}{4 n-4}\right)\right)^{2}
\end{aligned}
$$

and $\lim _{n \rightarrow x} \sin ^{2}\left(N \Theta_{j(n)}\right)=\lim _{n \rightarrow x}\left(1-\cos ^{2}\left(N \Theta_{j(n)}\right)\right)=1$ yield

$$
\begin{equation*}
\lim _{n \rightarrow x} \cos ^{2}\left(N t_{n}\right)=1 . \tag{3.14}
\end{equation*}
$$

Regarding (1.7) the existence of $0<\delta=\delta(\varepsilon)<\pi / 2$ is ensured in order that $\delta \leqslant t_{n} \leqslant \pi-\delta$ for both cases and all sufficiently large n hold. Thus we obtain (applying (3.12) and by (3.13), (3.14)) that

$$
\begin{align*}
& \left|F_{j(n)}\left(B_{1}, \cos \left(t_{n}\right)\right)\right| \\
& \quad \geqslant\left|\frac{C_{1}}{\pi \cdot(n-1) \cdot\left(\cos \left(t_{n}\right)-\cos \left(\Theta_{j t_{n} n}\right)\right)}\right| \tag{3.15}
\end{align*}
$$

is true for a suitable $C_{1}>0$ (independent of n) and all sufficiently large n. By the mean value theorem of differential calculus we obtain for those n

$$
\begin{align*}
& \left|\pi \cdot(n-1) \cdot\left(\cos \left(t_{n}\right)-\cos \left(\Theta_{j(n)}\right)\right)\right| \\
& \quad=C_{2} \cdot|\sin (\xi)| \quad\left(\delta<\xi=\xi\left(t_{n}, \Theta_{j(n)}\right)<\pi-\delta\right) \\
& \quad \leqslant C_{2} . \tag{3.16}
\end{align*}
$$

(For the 1st case we have $C_{2}=\pi^{2}$ and for the 2 nd case $C_{2}=\pi^{2} / 2$.) The estimates (3.15) and (3.16) complete the proof of Lemma 3.2.

Lemma 3.3. For every $f \in V_{1}$ the representation

$$
\begin{equation*}
S_{n}\left(f, B_{1}\right)=\sum_{k=1}^{n} \frac{f\left(x_{k}\right)-f(-1)}{w_{1,3}\left(x_{k}\right) \cdot\left(P_{n-1}^{(-1 / 2,1 / 2)}\left(x_{k}\right)\right)^{2}} \tag{3.17}
\end{equation*}
$$

holds.
Proof. We will prove

$$
\begin{equation*}
\frac{2 \cdot P_{n-1}^{(-1 / 2,1 / 2)}(-1)}{\left(P_{n-1}^{(-1,2,1 / 2)}(-1)\right)^{3}}=-\sum_{k=1}^{n} \frac{1}{w_{1,3}\left(x_{k}\right) \cdot\left(P_{n-1}^{(-1 / 2,1 / 2)}\left(x_{k}\right)\right)^{2}} \tag{3.18}
\end{equation*}
$$

then (3.17) follows immediately by (3.9). For the polynomial

$$
G_{n-1}(x)=\frac{\cos (2 n-1) / 2 \cdot \arccos (x))}{\cos (\arccos (x) / 2)} \quad(x \in K)
$$

we have

$$
G_{n-1}^{\prime}\left(x_{k}\right)=\frac{2 n-1}{2} \cdot \frac{\sin \left((2 n-1) / 2 \cdot \arccos \left(x_{k}\right)\right)}{\sqrt{1-x_{k}^{2}} \cdot \cos \left(\arccos \left(x_{k}\right) / 2\right)} \quad(k=1, \ldots, n-1)
$$

and

$$
\begin{equation*}
\left(G_{n-1}^{\prime}\left(x_{k}\right)\right)^{2}=\frac{(2 n-1)^{2}}{2 \cdot w_{1,2}\left(x_{k}\right)} \quad(k=1, \ldots, n-1) \tag{3.19}
\end{equation*}
$$

On the other hand we have

$$
\begin{equation*}
\left(G_{n-1}(-1)\right)^{2}=(2 n-1)^{2} \tag{3.20}
\end{equation*}
$$

Using the fact that

$$
P_{n-1}^{\left(-1,2,1^{\prime}\right)}(x)=\prod_{k=1}^{n-1}((2 k-1) / 2 k) \cdot G_{n-1}(x)
$$

by (3.19) and (3.20) it follows that

$$
\begin{equation*}
\left(P_{n-1}^{(-1 / 2,1 / 2)}(-1)\right)^{2}=2 \cdot \mathfrak{w}_{1,2}\left(x_{k}\right) \cdot\left(P_{n-1}^{(-1 / 2.1 / 2)}\left(x_{k}\right)\right)^{2} \tag{3.21}
\end{equation*}
$$

is true for every $k=1, \ldots, n-1$. Now by (3.21) and

$$
\frac{P_{n-1}^{(-1 / 2,1 / 2)^{\prime}}(-1)}{P_{n-1}^{(-1 / 2,1 / 2)}(-1)}=-\sum_{k=1}^{n-1} \frac{1}{1+x_{k}}
$$

(3.18) follows immediately.

Lemma 3.4. For every' $f \in V_{i}$ нe have

$$
\lim _{n \rightarrow x} S_{n}\left(f, B_{1}\right)=\frac{1}{2} \cdot I\left(f, B_{1}\right)
$$

Proof. Consider for $a, \beta>-1$ the nth Gauss-Jacobi quadrature formula (see G. Szegö [4, Ch. 15.3])

$$
\begin{equation*}
Q_{n}^{(a, \beta)}(g)=\sum_{k=1}^{n} \lambda_{k n}^{(a, \beta)} \cdot g\left(x_{k n}^{(\alpha, \beta)}\right) \tag{3.22}
\end{equation*}
$$

in respect to $w_{\alpha, \beta}$, where $g: K \rightarrow \mathbb{R}$ is a function for which the (possibly improper) integral

$$
I^{(\alpha, \beta)}(g):=\int_{-1}^{1} w_{a, \beta}(x) \cdot g(x) d x
$$

exists.
The weights $\lambda_{h n}^{(u, \beta)}(k=1, \ldots, n)$ of (3.22) are given by

$$
\begin{equation*}
\lambda_{k n}^{(\alpha, \beta)}=\frac{\gamma_{n}^{(a, \beta)}}{w_{1.1}\left(x_{k n}^{(\alpha, \beta)}\right) \cdot\left(P_{n}^{(a, \beta)}\left(x_{k n}^{(a, \beta)}\right)\right)^{2}} \tag{3.23}
\end{equation*}
$$

where

$$
\gamma_{n}^{(a, \beta)}=2^{a+\beta+1} \cdot \frac{\Gamma(n+a+1) \cdot \Gamma(n+\beta+1)}{\Gamma(n+1) \cdot \Gamma(n+a+\beta+1)}
$$

and $x_{k n}^{(\alpha, \beta)}(k=1, \ldots, n)$ are the zeros of $P_{n}^{(a, \beta)}$. It is well known that the quadrature convergence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} Q_{n}^{(u, \beta)}(g)=I^{(\alpha, \beta)}(g) \tag{3.25}
\end{equation*}
$$

holds for every function $g: K \rightarrow \mathbb{R}$, for which the integral $F^{(a, \beta)}(g)$ exists (compare G. Szegö [4, Theorem 15.2.3]). Now let $f \in V_{1}$ be arbitrarily fixed. By (3.17), (3.22)-(3.24) we obtain

$$
S_{n}\left(f, B_{1}\right)=\frac{1}{\gamma_{n-1}^{(-1.1 .12)}} \cdot Q_{n-1}^{(-1.1 .1 .2)}\left(g_{f}\right),
$$

where $\left.\left.g_{f}:\right]-1,1\right] \rightarrow \mathbb{R}$ is defined by

$$
g_{f}(x):=\frac{f(x)-f(-1)}{w_{0,2}(x)}
$$

The assumption $f \in V_{1}$ implies the existence of real constants $M, \delta>0$ such that

$$
\left|\frac{f(x)-f(-1)}{(1+x)^{\delta+1 / 2}}\right| \leqslant M
$$

is true for every $x \in]-1,1]$, which implies

$$
\begin{aligned}
\left|w_{-1 / 2,1 / 2}(x) \cdot g_{f}(x)\right| & =w_{-1 / 2, \delta-1}(x) \cdot\left|\frac{f(x)-f(-1)}{(1+x)^{\delta+1 / 2}}\right| \\
& \left.\left.\leqslant w_{-1 / 2, \delta-1}(x) \cdot M \quad \text { for } \quad x \in\right]-1,1\right]
\end{aligned}
$$

This estimate ensures (using the existence of the integral $\left.\int_{-1}^{1} \mathfrak{w}_{-1 / 2, \delta-1}(x) \cdot M d x\right)$ the existence of $I^{(-1 / 2,1 / 2)}\left(g_{f}\right)$. Thus (3.25) can be applied; regarding (3.26) and $\lim _{n \rightarrow x} \gamma_{n}^{(-1 / 2,1 / 2)}=2$ we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} S_{n}\left(f, B_{1}\right) & =\lim _{n \rightarrow \infty} \frac{1}{\gamma_{n}^{(-1 / 2,1 / 2)}} \cdot Q_{n-1}^{(-1,2,1 / 2)}\left(g_{f}\right) \\
& =\frac{1}{2} \cdot I^{(-1 / 2 \cdot 1 / 2)}\left(g_{f}\right)=\frac{1}{2} \cdot I\left(f, B_{1}\right) .
\end{aligned}
$$

3.5. Now (3.2) can easily be proved by use of the preceding lemmas. Therefore let an exceptional-point sequence $\left(x_{j(n)}\right)_{n \in \mathbb{N}}$ satisfying (1.7) and an $f \in V_{1}$ be arbitrarily given.
(i) In the case $I\left(f, B_{1}\right)=0$ Lemma 3.4 implies $\lim _{n \rightarrow \infty} S_{n}\left(f, B_{1}\right)=0$ which yields (by Lemmas 3.1 and (3.7)) $\lim _{n \rightarrow \infty}\left\|R_{j(n)}\left(f, B_{1}\right)\right\|=0$.
(ii) On the other hand let be $\lim _{n \rightarrow \infty}\left\|R_{j(n)}\left(f, B_{1}\right)\right\|=0$. This implies $\lim _{n \rightarrow \infty}\left\|F_{j(n)}\left(B_{1}\right)\right\| \cdot S_{n}\left(f, B_{1}\right)=0$. That yields (using that $\lim _{n \rightarrow x}\left\|F_{/(n)}\left(B_{1}\right)\right\|=0$ is impossible by Lemma 3.2)

$$
\lim _{n \rightarrow \infty} S_{n}\left(f, B_{1}\right)=\frac{1}{2} \cdot I\left(f, B_{1}\right)=0
$$

References

1. V. Kumar, Convergence of Hermite-Fejér interpolation on the extended nodes, Publ. Math. Debrecen 24 (1977), 30-37.
2. V. Kumar and K. K. Mathur, Uniform convergence of modified Hermite-Fejér interpolation process omitting derivatives, J. Approx. Theory 28 (1980), 96-99.
3. R. B. Saxena, The Hermite-Fejer process on the Tchebycheff matrix of the second kind, Studia Sci. Math. Hungar. 9 (1974), 223-232.
4. G. Szegö, "Orthogonal Polynomials," Colloquium Publications, Vol. 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975.
5. P.Turan, A remark on Hermite-Fejér interpolation, Ann. Univ. Sci. Budapest. Eötuös Sect. Math. 3/4 (1960/61), 369-377.
